
Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 1

Fast Square Root & inverse calculation for Arbitrary
Precision numbers.

By Henrik Vestermark (hve@hvks.com)

Abstract:
This is a follow-up to a previous paper that describes the math behind arbitrary precision
numbers. First of all the original paper was written back in 2013 and quite a few things
had happens since then, secondly, I have come across some other interesting methods to
do the calculation. The paper describes in more detail how to do square root, inverse (1/x)
& √𝑥

೙ calculations with arbitrary precision and outlines some traditional methods but
also introduces an improved version that doubles the speed of each calculation. Particular
a new concept for iterations using dynamic precision to make a fast calculation of the
square root, inverse, or √𝑥

೙ calculation.

Introduction:
Usually, when implementing arbitrary precision math packages you would use the
standard Newton calculation as the preferred iterative method for calculating the square
root, the inverse (1/x), or, √𝑥

೙ for arbitrary precisions. The Newton method has a
convergence rate of two meaning that for each iteration the number of correct digits
doubles. This is traditional and has been implemented in various arbitrary precision
packages. However, there exist other methods with higher order convergence rates (e.g.
Halley’s method with cubic convergence rate). We will examine if using higher order
methods (e.g. Halley) is worth the extra work and compare it with second order methods
(e.g. Newton).

As usual, we will show the actual C++ source for the computation using the author’s own
arbitrary precision Math library, see [1].

This paper is part of a series of arbitrary precision papers describing methods,
implementation details, and optimization techniques. These papers can be found on my
website at www.hvks.com/Numerical/papers.html and are listed below:

1. Fast Computation of Math Constants in arbitrary precision. HVE Fast Gamma, Beta,
Error, and Zeta functions for arbitrary precision.

2. Fast Gamma, Beta, Error, and Zeta functions for arbitrary precision. HVE Fast
Gamma, Beta, Error, and Zeta functions for arbitrary precision.

3. Fast Square Root & Inverse calculation for arbitrary precision math. HVE Fast
Square Root & inverse calculation for arbitrary precision

4. Fast Exponential calculation for arbitrary precision math. HVE Fast Exp() calculation
for arbitrary precision

5. Fast logarithm calculation for arbitrary precision math. HVE Fast Log() calculation for
arbitrary precision

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 2

6. Practical implementation of Spigot Algorithms for Transcendental Constants.
Practical implementation of Spigot Algorithms for transcendental constants

7. Practical implementation of π algorithms. HVE Practical implementation of PI
Algorithms

8. Fast Trigonometric function for arbitrary precision. HVE Fast Trigonometric
calculation for arbitrary precision

9. Fast Hyperbolic functions for arbitrary precision. HVE Fast Hyperbolic calculation for
arbitrary precision

10. Fast conversion from arbitrary precision number to a string. HVE Fast conversion
from arbitrary precision to string

11. Fast conversion from a decimal string to an arbitrary precision number. HVE Fast
conversion from string to arbitrary precision

Change log
 1-March 2023. Minor corrections,
26-January 2023. Cleaning up the document grammatically.

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 3

Contents
Abstract: .. 1
Introduction: .. 1
Change log .. 2
The Arbitrary precision library ... 4

Internal format for float_precision variables .. 5
Normalized numbers ... 5

Square root .. 7
Newton’s Method without division .. 7

The Initial guess .. 8
Example of Newton’s method for square root .. 8
Brent improvement ... 9

Newton’s method with division .. 9
The initial guess .. 10
Example Newon method for square root using division ... 10

Halley’s method .. 10
Example of Halley’s method for square root .. 12

Goldschmidt method ... 12
Further Improvement of the methods? .. 12

Iteration using Dynamic Precision .. 12
Source sqrt newton_dynamic() ... 14
Source sqrt Halley_dynamic() .. 15
Number as a power of two .. 16
Precision less than 16 digits .. 16

Recommendation for the square root .. 17
Nrooth ... 18

Source for nrooth_newton_dynamic() ... 19
Recommendation 𝒏𝒙 .. 20

The Inverse.. 21
Newton’s method for inverse .. 21

Example of Newton’s method for inverse .. 22
Brent improvement ... 23
Iteration with dynamic precision .. 23
Source inverse_newton_dynamic() ... 23

Higher-order Newton-like methods for inverse .. 24
Example of Cubic convergence method for inverse ... 25
Source inverse_3rd order_dynamic() .. 26

Performance: ... 27
Recommendation Inverse .. 28

Reference .. 29

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 4

The Arbitrary precision library
If you already are familiar with the arbitrary precision library, you can skip this section.

To understand the C++ code and text we have to highlight a few features of the arbitrary
precision library where the class name is float_precision. Instead of declaring, a variable
with a float or double you just replace the type name with float_precision. E.g.

float_precision f; // Declare an arbitrary precision float with 20 decimal digits precision

You can add a few parameters to the declaration. The first is the optional initial value and
the second optional parameter is the floating-point precision. The native type of a float
has a fixed size of 4 bytes and 8 bytes for double, however since this precision can be
arbitrary we can declare the wanted precision as the number of decimal digits we want to
use when dealing with the variable. E.g.

float_precision fp(4.5); // Initialize it to 4.5 with default 20 digits precision
float_precision fp(6.5,10000); // Initialize it to 6.5 with a precision of 10,000 digits

The precision of a variable can be dynamic and change throughout the code, which is
very handy to manipulate the variable. To change or set the precision you can call the
method .precision() E.g.

f.precision(100000); // Change the precision to 100,000 digits
f.precision(fp.precision()-10); // Lower the precision with 10 digits
f.precision(fp.precision()+20); // Increase precision with 20 digits

There is another method to manipulate the exponent of the variables. The method is
called .exponent() and returns or sets the exponent as a power of two exponents (same as
for our regular build-in types float and double) E.g.

f.exponent(); // Return the exponent as 2e

f.exponent(0) // Remove the exponent
f.exponen(16) // Set the exponent to 216

There is a second way to manipulate the exponent and that is the class
method. .adjustExponent(). This method just adds the parameter to the internal variable
that holds the exponent of the float_precision variable. E.g.

f.adjustExponent(+1); // Add 1 to the exponent, the same as multiplying the number with 2.

f.adjustExponent(-1); // Subtract 1 from the exponent, the same as dividing the number with 2.

This allows very fast multiplication of division with a number that is any power of two.

The method .iszero() returns true if the float_precision number is zero otherwise false.

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 5

There is an additional method() but I will refer to the reference for the user manual to the
arbitrary precision math package for details.

All the normal operators and library calls that work with the built-in type float or double
will also work with the float_precision type using the same name and calling parameters.

Internal format for float_precision variables

For the internal layout of the arbitrary precision number, we are using the STL vector
library declared as:

vector<uintmax_t> mBinary;

uintmax_t is mostly a 64-bit quantity on most systems, so we use a vector of 64-bit
unsigned integers to store our floating-point precision number.

The method .size() returns the number of internal vector entries needed to hold the
number.

The Binary format mBinary

There are other internal class variables like the sign, exponent, precision, and rounding
mode but these are not important to understand the code segments.

Normalized numbers

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 6

A float_precision variable is always stored as a normalized number with a one in the
integer portion of the number. The only exception is zero, which is stored as zero.
Furthermore, a normalized number has no trailing zeros.

For more details see [1].

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 7

Square root

There exist several methods to compute the square root. Among them are:

1) Newton’s Method.
2) Halley’s Method.
3) Goldschmidt.

The most common one for arbitrary precision libraries is the Newton method.

Newton’s Method without division

For the function sqrt(y) we can use a Newton iteration algorithm to get our result. The
Newton iteration is defined by:

𝑥௡ାଵ = x௡ −
௙(௫೙)

௙ᇱ(௫೙)
 (1)

This method can be found the following way by restating the problem of finding Sqrt(y),

we instead try to find the reciprocal square root of y which is:
ଵ

√௬
. Once it has been found

we can find ඥ𝑦 = 𝑦
ଵ

√௬
. By just multiplying the result with y.

Now to find the
ଵ

√௬
. We use the equation

ଵ

௫మ
= 𝑦 =>

ଵ

௫మ
− 𝑦 = 0 .

Using Newton's formula, we get using f(x)=
ଵ

௫మ
− 𝑦, f’(x)=

ିଶ

௫య

𝑥௡ାଵ = x௡ −

1
𝑥௡

ଶ − 𝑦

−2
𝑥௡

ଷ

=>

𝑥௡ାଵ = x௡ +
1

2
𝑥௡

ଷ ൬
1

𝑥௡
ଶ

− 𝑦൰ =>

𝑥௡ାଵ =
ଵ

ଶ
x௡(3 − 𝑦𝑥௡

ଶ) (2)

We now have our algorithm for finding the square root without any division.

𝑥௡ାଵ =
ଵ

ଶ
x௡(3 − 𝑦𝑥௡

ଶ) (3)

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 8

𝑊ℎ𝑒𝑟𝑒 𝑥଴ ≈
1

ඥ𝑦
 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑢𝑒𝑠𝑠)

𝑎𝑛𝑑 𝑥௡ 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 𝑡𝑜𝑤𝑎𝑟𝑑𝑠
1

ඥ𝑦

For the initial guess x0, we simply use the c library sqrt(b) function for the double
variable. Now for this to work for arbitrary precision we need to use a little trick to
ensure that we can call the c library sqrt function with a double argument that fits the
range of the IEEE754 double standard. See the initial guess section below.

Notice the algorithm only requires us to do one subtraction and four multiplications per
iteration. Well, multiplication by 0.5 can be done by just adjusting the exponent and
therefore should not count as a ‘real’ multiplication. We end up with one subtraction and
three multiplication per iteration and then a final multiplication for the calculation of the
square root.
Also as for the Newton method, we will have quadratic convergence meaning that for
each iteration we will double the number of correct digits in our result.

The Initial guess

As for the initial guess, we can extract the exponent 2௘೛ out of the equation, then multiply

the result with 2
೐೛

మ after the iteration (assuming ep is an even integer) and remember our
exponent is an integer in base two. I1 is the one-digit integer and fn is the n fraction parts
digits.

ଵ

ௌ௤௥௧(௬)
=

ଵ

ௌ௤௥௧(௜భ.௙೙ଶ೐೛)
=

ଵ

ௌ௤௥௧(௜భ.௙೙)
2ି

೐೛

మ (4)

If ep is odd, we have to use (since the exponent needs to be an integer):

ଵ

ௌ௤௥௧(௬)
=

ଵ

ௌ௤௥௧(௜భ.௙೙ଶ೐೛)
=

ଵ

ௌ௤௥௧(௜భ.௙೙∗ଶ)
2ି

೐೛షభ

మ (5)

This simplifies the initial guess since we know that factoring out the exponent will leave
us with an arbitrary precision number between [1…2[(for even exponent) and [1...4[for
odd exponent. With the number well within the range of IEEE754, we can find a good

initial guess of
ଵ

ௌ௤௥௧(௬)
 using standard IEEE754 arithmetic with approx. 15-16 significant

decimal digits.

Example of Newton’s method for square root
To see how this algorithm works let us find the Sqrt of 1.6 using an initial start guess of
1/1.6=0.625.

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 9

Newton 1/sqrt(y)
Sqrt(y) 1.6
y= 1.6
x0= 0.625

n xn Sqrt(y) Error
1 0.7421875 1.1875 7.74E-02
2 0.786218643 1.257949829 6.96E-03
3 0.790533565 1.264853704 5.74E-05
4 0.790569413 1.26491106 3.90E-09
5 0.790569415 1.264911064 0.00E+00

After 5 iterations the difference between the iteration and the build in Sqrt() operator is 0
and the result of Sqrt(1.6) is 1.264911064

Brent improvement

Brent [7] points out that you can improve the Newton algorithm by iterating using:

𝑥௡ାଵ = 𝑥௡ + 𝑥௡(1 − 𝑦𝑥௡
ଶ) (6)

Which is identical from a mathematical point of view but different from a computational
point of view. Brent points out that you can perform the multiplication between xn-1 and
(1 − 𝑦𝑥௡

ଶ) in 𝑥௡(1 − 𝑦𝑥௡
ଶ) using only half the precision in the multiplication. You gain

one addition but do not need the multiplication with full precision. From a computational
point of view, you do save some time or gain some performance using this formula for
the iteration, particularly for a higher number of digits.

Newton’s method with division

Instead of the above indirect method. We could use the direct approach of finding y by

solving the equation f(x)=x2-y=0 and use the Newton method to solve for x. By applying
Newton’s method:

𝑥௡ାଵ = x௡ −
௙(௫೙)

௙ᇲ(௫೙)
 (7)

We get.

 𝑥௡ାଵ =
ଵ

ଶ
(𝑥௡ +

௬

௫೙
) (8)

Although it looks simple we have introduced one division per iteration. Any arbitrary
precision calculation should avoid divisions whenever possible since it is many times

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 10

slower than multiplication. In my arbitrary precision library, it is approx. four-eight times
slower than multiplication.

The initial guess

For the starting guess, we can use the same method as outlined in Newton without
division.
As for the initial guess, we can extract the exponent 2௘೛ out of the equation and then

multiply the result with 2
೐೛

మ after the iteration (assuming ep is an even integer) and
remember our exponent is an integer in base two i1 is the one-digit integer and fn is the n
fraction parts digits.

𝑆𝑞𝑟𝑡(𝑦) = 𝑆𝑞𝑟𝑡(𝑖ଵ. 𝑓௡2௘೛) = 𝑆𝑞𝑟𝑡(𝑖ଵ. 𝑓௡)2
೐೛

మ (9)

If ep is odd, we have to use (since the exponent needs to be an integer):

𝑆𝑞𝑟𝑡(𝑦) = 𝑆𝑞𝑟𝑡(𝑖ଵ. 𝑓௡2௘೛) = 𝑆𝑞𝑟𝑡(𝑖ଵ. 𝑓௡ ∗ 2)2ି
೐೛షభ

మ (10)

This simplifies the initial guess since we know that factoring out the exponent will leave
us an arbitrary precision number between [1..2[(for even exponent) and [1..4[for odd
exponent. With the number well within the range of IEEE754, we can find a good initial
guess using standard IEEE754 arithmetic with approx. 15-16 significant decimal digits.

Example Newon method for square root using division

Newton sqrt(y)
Sqrt(y) 1.6
y= 1.6
x0= 1.6

n xn Sqrt(y) Error
1 1.3 1.3 -3.51E-02
2 1.265384615 1.265384615 -4.74E-04
3 1.264911153 1.264911153 -8.86E-08
4 1.264911064 1.264911064 -3.11E-15
5 1.264911064 1.264911064 0.00E+00

By using a start guess of 1.6, we get the result after five iterations and again we observe a
quadratic convergence rate,

Halley’s method

Halley’s method has a cubic convergence rate compared to Newton’s quadratic order.
Cubic convergence rate means that for every iteration you get three times as many correct

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 11

digits compare to Newton’s method which only gives you two times as many correct
digits. Higher order convergence results in fewer iterations step at the expense of a more
complex calculation per iteration. Normally it tends to even out that the time you save in
fewer iterations steps is lost by a more complex iteration.

Halley square root method is using the following iterations step for finding
ଵ

√௬
:

𝑧௡ = 𝑦𝑥௡

ଶ

𝑥௡ାଵ = 𝑥௡
ଵ

଼
(15 − 𝑧௡(10 − 3𝑧௡)) (11)

And then we get the final result of ඥ𝑦=y·xn+1.

It can be found using Householders’ 2nd order method aka. Halley’s method:

𝑥௡ାଵ = 𝑥௡ −
௙(௫೙)

௙ᇲ(௫೙)
−

௙(௫೙)మ௙ᇱᇱ(௫೙)

ଶ௙ᇱ(௫೙)య
 (12)

Where 𝑓(𝑥) = 𝑦 −
ଵ

௫మ
, 𝑓ᇱ(𝑥) =

ଶ

௫య
, 𝑓ᇱᇱ(𝑥) = −

଺

௫ర

This yield:

𝑥௡ାଵ = 𝑥௡ −
𝑦 −

1
𝑥௡

ଶ

2
𝑥௡

ଷ

−
൬𝑦 −

1
𝑥௡

ଶ൰
ଶ

(−
6

𝑥௡
ସ)

2 ൬
2

𝑥௡
ଷ൰

ଷ =>

𝑥௡ାଵ = 𝑥௡ − 𝑥௡
ଷ

1

2
൬𝑦 −

1

𝑥௡
ଶ

൰ + 𝑥௡
ହ

3

8
(𝑦 −

1

𝑥௡
ଶ

)ଶ =>

𝑥௡ାଵ = 𝑥௡ − 𝑥௡

1

2
(𝑦𝑥௡

ଶ − 1) + 𝑥௡

3

8
(𝑦𝑥௡

ଶ − 1)ଶ

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑧௡ = 𝑦𝑥௡
ଶ 𝑦𝑜𝑢 𝑔𝑒𝑡 𝑥௡ାଵ = 𝑥௡ − 𝑥௡

1

2
(𝑧௡ − 1) + 𝑥௡

3

8
(𝑧௡ − 1)ଶ =>

 𝑥௡ାଵ = 𝑥௡

1

8
(8 − 4(𝑧௡ − 1) + 3(𝑧௡ − 1)ଶ) =>

𝑥௡ାଵ = 𝑥௡

1

8
(15 − 4𝑧௡ + 3(𝑧௡

ଶ + 1 − 2𝑧௡)) =>

𝑥௡ାଵ = 𝑥௡

1

8
(15 − 10𝑧௡ + 3𝑧௡

ଶ) =>

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 12

𝑥௡ାଵ = 𝑥௡

1

8
(15 − 𝑧௡(10 − 3𝑧௭))

Per iteration, we have five multiplication and two subtraction. Compare to Newton we
have added a subtraction and two extra multiplication so each iteration will take a little
bit longer however you will have fewer iterations to perform. (Approx. 2/3).

Example of Halley’s method for square root

Halley 1/Sqrt(y)
Sqrt(y) 1.6
y 1.6
x0 0.625

n xn Sqrt(y) Error
1 0.775146 1.240234375 2.47E-02
2 0.790555 1.264887927 2.31E-05
3 0.790569 1.264911064 1.93E-14
4 0.790569 1.264911064 0.00E+00

As expected, we get a faster iteration and reach the result after only four iterations.

Goldschmidt method

Goldschmidt method is typically implemented in FPGA or Floating point unit and takes
advantage of the CPU pipeline structure to archive higher performance. However, at the
software level, it does not produce anything faster or better than a standard Newton
method.

Further Improvement of the methods?

Can we further improve the sqrt() calculation? We can apply one major trick. We first
note that a Newton iteration is self-correcting meaning that in case we have made an
imprecise calculation in one iteration step it will be corrected automatically in the
following Newton iteration.

Iteration using Dynamic Precision

We can use that information to instead of starting the first couple of iterations with a
precision of thousands of digits we could instead start with a smaller precision and then
gradually increase the precision in our calculation until we in the last iterations do all
calculations using the required number of digits. Initially, in our first guess, we have

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 13

approx. 15-16 correct digits. We know that a Newton iteration doubles the number of
correct digits for every iteration, We will start the first iteration using 32 digits precision
and then after each iteration step, we double the precision. E.g. 64 digits in the next
iteration, 128 digits in the following iteration, etc. until we have reached the required
final precision.
I have not seen this technic applied before so in lack of a precedent I will call this a
Newton with iterative deepening or Newton using dynamic precision.

Applying this technic, we get a speed up over the classic Newton iteration with an
approx. a factor of two times faster than regular Newton. We see the same speed-up
improvement comparing regular Halley with dynamic precision. In addition, as you can
notice on the diagram below that is a difference between using Newton and Halley
methods. Newton has the benefit of needing fewer multiplications but Halley can do the
calculation using fewer iterations. Halley method is consistently approx. 20% faster than
the Newton method in the below performance chart.

 0.001

 0.010

 0.100

 1.000

 10.000

 100.000

 1,000.000

 10,000.000

 100,000.000

 1,000,000.000

 10,000,000.000

 10 100 1,000 10,000 100,000 1,000,000 1,000,000

Sqrt Performance in milliseonds

sqrt_div sqrt_newton sqrt_newton_deep

sqrt_Newton_brent sqrt_newton_brent_deep sqrt_halley

sqrt_halley_deep

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 14

Figure 1. The horizontal axes are precision in decimal digits. The vertical axis is in
milliseconds.

The performance gain of dynamic versus regular Newton is approx. two. Moreover, the
gain from Newton with division and Newton without division is approx. a factor of four
to eight.

Source sqrt newton_dynamic()
float_precision sqrt_newton_dynamic(const float_precision& a)
 {
 const unsigned int extra = 2;
 const size_t precision = a.precision();
 const eptype expo = a.exponent();
 const float_precision c1(1), c3(3);
 eptype expo_sq;
 size_t digits;
 double fv;
 float_precision r, x, y(a);

 if (a.iszero() || a == c1) // Simple squareroot
 return a;
 y.precision(precision + extra);
 expo_sq = expo / 2;
 y.exponent(expo - 2 * expo_sq);

// Do iteration using 2 digits higher precision
 r.precision(precision + extra);
 x.precision(precision + extra);

 // Get an initial guess using an ordinary floating point
 fv = (double)y; // Convert to double
 fv = 1 / sqrt(fv); // set the initial guess with at ~ 16 correct digits
 x = float_precision(fv); // Set start iterations value

 // Now iterate using Netwon x=0.5x(3-yx^2)
 // y is the original number of the square root which has the full precision
 for (digits = std::min((size_t)32, precision); ; digits =
std::min(precision + extra, digits * 2))
 {
 // Increase precision by two for the working variable r,x
 r.precision(digits);
 x.precision(digits);
 r = c3 - y * x * x; // 3-yx^2
 r.adjustExponent(-1); // (3-yx^2)/2
 x *= r; // x=x(3-yx^2)/2
 // Reach final iteration step in regards to precision
 if (digits == precision + extra)
 {
 r.precision(precision + 1); // round to final precision
 if (r == c1) // break if no improvement
 break;
 r.precision(precision + extra);
 }
 }

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 15

 x *= y;
 x.adjustExponent(expo_sq);
 // Round to the same precision as argument and rounding mode
 x.mode(a.mode());
 x.precision(precision);
 return x;
 }

Source sqrt Halley_dynamic()
float_precision sqrt_halley_dynamic(const float_precision& a)
 {
 const unsigned int extra = 2;
 const size_t precision=a.precision();
 const eptype expo=a.exponent();
 eptype expo_sq;
 size_t digits;
 double fv;
 float_precision r, x, y(a);
 const float_precision c1(1), c15(15), c3(3), c10(10);

 if (a.iszero() || a == c1) // Simple square root
 return a;

 expo_sq = expo / 2;
 y.exponent(expo - 2 * expo_sq);
 // Do iteration using 2 digits higher precision
 y.precision(precision + extra);
 r.precision(precision + extra);
 x.precision(precision + extra);
 // Get an initial guess using an ordinary floating point
 fv = (double)y; // Convert to double
 // set the initial guess with at approx 16 correct digits
 fv = 1 / sqrt(fv);
 x = float_precision(fv);

 // Now iterate using Halley
 // y is the original number of the square root which has the full precision
 for (digits = std::min((size_t)48, precision); ; digits =
std::min(precision + extra, digits * 3))
 {
 r.precision(digits);
 x.precision(digits);
 r = y * x * x; // yx^2
 r = (c15 - r*(c10 - c3*r)); // 15-yx^2*(10-3*yx^2)
 r.adjustExponent(-3); // r=r/8
 x *= r; // x=x/8(15-yx^2*(10-3*yx^2)
 // Reach final iteration step in regards to precision
 if (digits == precision + extra)
 {
 r.precision(precision + 1); // round to final precision
 if (r == c1) // break if no improvement
 break;
 }

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 16

 }

 x *= y;
 x.adjustExponent(expo_sq);
 // Round to the same precision as argument and rounding mode
 x.mode(a.mode());
 x.precision(precision);
 return x;
 }

Number as a power of two.

We can use the definition of a normalized number in our arbitrary precision package. A
normalized number always has a one as the first digit before the ‘.’. If the number has no
fraction part it will be a true power of two numbers and the raise to the power is the
exponent of the number (base 2). If the exponent is, even then, we have directly our
square root by just dividing the exponent by two and you are done. You can insert the
following code right after the first assignment of the local expo variable.

Source:
 // Check for square root is a power of two and even exponent
 if (a.size() == 1 && (expo & 0x1) == 0)
 {// True power of 2 and the exponent even
 y.exponent(y.exponent() >> 1); // Half the exponent and return the
result.
 y.precision(precision);
 return y;
 }

Of course, not all numbers are a power of two numbers however, if we encounter one we
can return the square root of that number without any time-consuming iteration.

Precision less than 16 digits

Another small improvement is if you are working with less than 16 digits of arithmetic. If
you do, we can just convert it to a double, calculate the square root using the double type
and then initialized and return a new float_precision variable that holds the result, see the
code segment below.

Source:
 // Check if we can handle the request within the IEEE754 double standard
(64bit)
 if (precision < 16)
 {double fv;
 fv = a; fv = sqrt(fv);
 return float_precision(fv, precision, a.mode());
 }

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 17

Of course, you do not expect to encounter many of these situations since you are properly
using the arbitrary precision library to work with large numbers in the first place.

Recommendation for the square root

Sqrt(y) Addition/Subtraction Multiplication Multiplication

half precision
Division

Newton* 1 3
Newton
(Brent)

2 2 1

Newton
Division*

1 1

Halley 2 5
*) multiplication with 0.5 is not a full multiplication but is just carried out by adjusting
the exponent and therefore just does not count as a ‘real’ multiplication. Newton with
division requires the least among of operations but the division is an expensive operator
that consistently performs 4-8 times slower than the other methods and can therefore not
be recommended.

Based on the performance measure recommend:

1) Do not use Newton’s method with division. Choose the Newton method that
avoids division. The division is usually 4-10 times slower than multiplication.

2) There is approx. 20% performance gain using Halley over the Newton Method
(Brent variation). Newton is simpler but requires additional iterations than Halley.
Halley is more complex per iteration but requires fewer of them to complete.

3) I recommend using Halley with dynamic precision.
4) If you choose Newton then use the Brent improvement.
5) The use of dynamic precision improves the performance by a factor of two for

both Newton and the Halley methods.

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 18

Nrooth

Now that we have found a better way of doing the square root we also need to consider if
we can use a similar technic when dealing with the √𝑥

೙ . By default, we resort to the
power function however that evaluates to:

 √𝑥
೙

= 𝑥
భ

೙ = 𝑒
భ

೙
∗௟௢௚೐(௫)

Which use two very expensive and time-consuming functions exp(x) and log(x). Instead,
we can create a new function nroot(x,n) that calculate √𝑥

೙ . Using the same principle as the
sqrt() the result is a huge speed-up improvement.

As can be seen below the speed of the nroot() is more or less constant regardless of the
nth root and it is several magnitudes better than the traditional calculation via the pow()
function.

Let us end the discussion of the sqrt() and nroot() by devising the Newton formula for the
nroot. It is quite similar to the way we got the algorithm for the sqrt() function. We are

trying to find a function to the solution 𝑥 = √𝑆
೙

=> 𝑥௡ = 𝑆 =>
ଵ

௫೙
=

ଵ

ௌ

Letting 𝑦 =
ଵ

ௌ
 you get: 𝑓(𝑥) =

ଵ

௫೙
− 𝑦 = 0 𝑎𝑛𝑑 𝑓ᇱ(𝑥) = −𝑛𝑥ି௡ିଵ

Using the Newton method, you get:

𝑥௜ାଵ = 𝑥௜ −
𝑥௜

ି௡ − 𝑦

−𝑛𝑥௜
ି௡ିଵ =>

𝑥௜ାଵ = 𝑥௜ +
1

𝑛
(𝑥௜ − 𝑥௜

௡ାଵ𝑦) =>

𝑥௜ାଵ = 𝑥௜ +
1

𝑛
𝑥௜(1 − 𝑥௜

௡𝑦) =>

𝑥௜ାଵ = 𝑥௜
ଵ

௡
(𝑛 + 1 − 𝑥௜

௡𝑦) (13)

And now √𝑆
೙

=
ଵ

௫೔శభ

We still have a division
ଵ

௡
 but it is with the constant n so we can calculate it once before

the start of the iteration avoiding any division while iterating.

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 19

We could have done a more direct approach as we saw for the square root:

𝑥 = √𝑆
೙

=> 𝑥௡ = 𝑆 => 𝑥௡ − 𝑆 = 0

You get 𝑓(𝑥) = 𝑥௡ − 𝑆 = 0 𝑎𝑛𝑑 𝑓ᇱ(𝑥) = 𝑛𝑥௡ିଵ

Using the Newton method, you get:

𝑥௜ାଵ = 𝑥௜ −
𝑥௜

௡ − 𝑆

𝑛𝑥௜
௡ିଵ =>

𝑥௜ାଵ = 𝑥௜ −
1

𝑛
(𝑥௜ −

𝑆

𝑥௜
௡ିଵ) =>

𝑥௜ାଵ =
ଵ

௡
((𝑛 − 1)𝑥௜ +

ௌ

௫೔
೙షభ) (14)

We end up with an extra division that we need to calculate per iteration and therefore it
will be slower than the first version as we saw when calculating the square root.

There exist other higher-order methods like the Halley but that will be slower than the
Newton version. In the Booth Arbitrary precision library, they did some testing and the
Newton method came out ahead of all others methods. See [8]

As for the nrooth algorithm, it can also benefit from using dynamic precision as outlined
for both the inverse and sqrt root functions

Source for nrooth_newton_dynamic()
float_precision nroot_newton_dynamic(const float_precision& a, const uintmax_t n)
 {
 const size_t extra = 2;
 const size_t precision=a.precision();
 const eptype expo = a.exponent();
 const float_precision c1(1);
 eptype expo_sq;
 size_t digits;
 double fv;
 float_precision r, x, y(a), fn(n);

 if (a.iszero() || a == c1 || n == 1)
 return a;
 y.precision(precision + extra);
 expo_sq = expo / 2;
 y.exponent(expo - 2 * expo_sq);
 // Do iteration using guard digits with higher precision
 x.precision(precision + extra);
 fn.precision(precision + extra);

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 20

 // Get an initial guess using an ordinary floating point
 fv = y;
 fv = pow(fv, 1.0 / n);
 fv = 1 / fv;

// set the initial guess with at ~ 16 correct digits
 x = float_precision(fv);
 fn = 1 / fn;
 // Now iterate using Netwon x=x*(-yx^n+(n+1))/n

// y is the original number to nroot which has the full precision
 for (digits = std::min((size_t)32, precision); ; digits =
std::min(precision + extra, digits * 2))
 {
 // Increase precision by a factor of two
 r.precision(digits);
 x.precision(digits);
 float_precision p(x);
 float_precision res(1, digits);
 // Do x^n
 for (uintmax_t i = n; i > 0; i >>= 1)
 {
 if ((i & 0x1) != 0)
 res *= p; // Odd
 if (i>1)
 p *= p;
 }

 r = float_precision(n + 1) - y*res; // (n+1)-yx^n
 r *= fn; // (-yx^n+(n+1))/n
 x *= r; // x=x*(-yx^n+(n+1))/n
 // Reach final iteration step in regards to precision
 if (digits == precision + extra)
 {
 r.precision(precision+1); // round to final precision
 if (r == c1) // break if no improvement
 break;
 }
 }

 x = 1 / x; // n root of x is now 1/x;
 x.exponent(x.exponent() + expo_sq);
 // Round to same precision as argument and rounding mode
 x.mode(a.mode());
 x.precision(precision);
 return x;
 }

Recommendation √𝒙
𝒏

1) Use the Newton method with dynamic precision.

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 21

The Inverse

To handle floating-point division we rewrite the equation a/b to a· (1/b). Multiplication is
a much faster operation than division so it makes sense to do it this way. Now we only
need to figure out how to quickly do a calculation of the inverse of (1/b). This same issue
faces many microprocessors or early RISC (Reduced Instruction Set CPU) that did not
have hardware support for the division operator. The traditional method has been used
due to its simplicity but there exist other higher-order methods that we will examine in
this chapter.

Newton’s method for inverse

We can use a classic Newton iteration using the following algorithm for calculating 1/b:

𝑥௡ାଵ = 𝑥௡(2 − 𝑥௡𝑦)

𝑊ℎ𝑒𝑟𝑒 𝑦 = 𝑏 𝑎𝑛𝑑 𝑥଴ ≈
1

𝑏
 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑢𝑒𝑠𝑠)

𝑎𝑛𝑑 𝑥௡ 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 𝑡𝑜𝑤𝑎𝑟𝑑𝑠
1

𝑏

Algorithm 1

This can also be found the following way by restating the problem of finding y
x


1
.

Applying it to the Newton method, you get:

Where 𝑓(𝑥) = 𝑦 −
ଵ

௫
, 𝑓ᇱ(𝑥) =

ଵ

௫మ

𝑥௡ାଵ = 𝑥௡ −
𝑦 −

1
𝑥௡

1
𝑥௡

ଶ

=>

𝑥௡ାଵ = 𝑥௡ − 𝑥௡
ଶ ൬𝑦 −

1

𝑥௡
൰ =>

𝑥௡ାଵ = 𝑥௡ − 𝑥௡(𝑥௡𝑦 − 1) =>

𝑥௡ାଵ = 𝑥௡(2 − 𝑥௡𝑦) (15)

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 22

Notice the algorithm only requires us to do one subtraction and two multiplications per
iteration.

Example of Newton’s method for inverse
To see how this algorithm works let us find the inverse of 1.6 using an initial start guess
of 0.1.

Newton 1/y
1/y 1.6
y= 1.6
x0= 0.1

n xn Error
1 0.184 4.4E-01
2 0.31383 3.1E-01
3 0.470078 1.5E-01
4 0.586598 3.8E-02
5 0.622641 2.4E-03
6 0.624991 8.9E-06
7 0.625 1.3E-10
8 0.625 0.0E+00

After eight iterations, the difference between the iteration and the build-in division
operator is zero and the result of 1/1.6 is 0.625.

Now the only question that remains is how to find a suitable starting point for the
iteration since we cannot perform an initial division as the guess of 1/b. Instead, we look
at how our arbitrary precision number is built up. i1 is the one-digit integer and fn is the n
fraction parts digits, ep is the exponent power in base 2.

1

𝑏
=

1

𝑖ଵ ∙ 𝑓௡2௘೛
=

1

𝑖ଵ ∙ 𝑓௡
2ି௘೛

We can extract the exponent portion and find the inverse
nfi .

1

1

and then multiply the

result with 2ି௘೛ to find our inverse of 1/b. Extracting the exponent will leave us with a
number [1..2[. Since we do have the support of hardware division using the IEE754
standard (64bit floating-point number) we can get our initial start guess, with
approximately 15-16 digits accuracy, and then begin to iterate towards a higher number
of accuracy. In case you do not have access to IEEE754, you can do a lookup table to
find a suitable starting point.

The Newton method for division is very fast and has quadratic convergence meaning that
for each iteration we will double the number of correct digits. To set this into perspective,

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 23

assume we have a number with 128 digits (27) and we start with approx. 24 correct digits
then we should expect only three iterations to get our result. For 1,000 digits it will
require approx. six iterations and for 1,000,000 digit precision approx. sixteen iterations.

Brent improvement

Brent [7] point out that you can improve the Newton algorithm by iterating using:

𝑥௡ାଵ = 𝑥௡ + 𝑥௡(1 − 𝑦𝑥௡) (16)

This needs one extra addition however, as Brent [7] points out you can do the
multiplication of 𝑥௡(1 − 𝑦𝑥௡) using only half the precision. Overall, you save some
computational power by using Brent’s suggestion

Iteration with dynamic precision

Since we are applying the Newton method, we can apply the same technique for the
square root and nroot calculation using dynamic precision.

We can use that information to instead of starting the first couple of iterations with a
precision of thousands of digits we could instead start with a smaller precision and then
gradually increase the precision in our calculation until we in the last iteration do all
calculations using the required number of digits. Initially, in our first guess, we have
approx. 15-16 correct digits. We know that a Newton iteration doubles the number of
correct digits for every iteration, We will start the first iteration using 32 digits precision
and then after each iteration step, we double the precision. E.g. 64 digits in the next
iteration, 128 digits in the following iteration, etc. until we have reached the required
final precision.
I have not seen this technic applied before so in lack of a precedent I will call this a
Newton with iterative deepening or Newton with dynamic precision.

Source inverse_newton_dynamic()
float_precision _float_precision_inverse_newton_dynamic(const float_precision& a)
 {
 const size_t extra = 5;
 const size_t precision=a.precision();
 const eptype expo=a.exponent();
 const float_precision c1(1), c2(2);
 size_t digits;
 double fx;
 float_precision r, x, y(a);

 // if a is a true power of 2 then we do not need to iterate but

// just reverse the exponent and return
 if (a.size() == 1)
 {
 y.exponent(-y.exponent());
 return y;

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 24

 }

 y.precision(precision + extra);
 // find the inverse of y without exponent and adjust for exponent later
 y.exponent(0); // y is in the interval [1..2[
 // Do iteration using guard digits with higher precision
 x.precision(precision + extra);

 // Get an initial guess using an ordinary floating point
 fx = 1/(double)y;
 x = float_precision(fx);

 // Now iterate using Netwon x=x(2-yx)
 for (digits = std::min((size_t)32, precision); ; digits =
std::min(precision + extra, digits * 2)
 {
 // Increase precision by two for the working variable r & x.
 r.precision(digits);
 x.precision(digits);
 r = c2 - y*x; // 2-xy
 x *= r; // x=x(2-xy)
 // Reach final iteration step in regards to precision
 if (digits == precision + extra)
 {
 r.precision(precision + 1); // round to final precision
 if (r == c1) // break if no improvement
 break;
 r.precision(precision + extra);
 }
 }

 // Reapply exponent, mode, and precision
 x.adjustExponent(-expo);
 x.mode(a.mode());
 x.precision(precision + 1);

return x;
 }

Higher-order Newton-like methods for inverse

A higher-order Newton-like method exists with a cubic convergence rate. We can iterate
toward the inverse by using the following:

𝑥௡ାଵ = 𝑥௡ + 𝑥௡(1 − 𝑦𝑥௡) + 𝑥௡(1 − 𝑦𝑥௡)ଶ (17)

We notice that compared to the Newton-Brent method we have an extra addition of
𝑥௡(1 − 𝑦𝑥௡)ଶ which adds one extra addition and one extra multiplication.

Alternatively, it can be stated as:

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 25

𝑧௡ = 1 − 𝑦𝑥௡
𝑥௡ାଵ = 𝑥௡ + 𝑥௡(𝑧௡) + 𝑥௡(𝑧௡)ଶ (18)

It can be found using Householders 2nd order method:

𝑥௡ାଵ = 𝑥௡ −
௙(௫೙)

௙ᇲ(௫೙)
−

௙(௫೙)మ௙ᇱᇱ(௫೙)

ଶ௙ᇱ(௫೙)య
 (19)

Where 𝑓(𝑥) = 𝑦 −
ଵ

௫
, 𝑓ᇱ(𝑥) =

ଵ

௫మ
, 𝑓ᇱᇱ(𝑥) = −

ଶ

௫య

This yield:

𝑥௡ାଵ = 𝑥௡ −
𝑦 −

1
𝑥௡

1
𝑥௡

ଶ

−

ቀ𝑦 −
1

𝑥௡
ቁ

ଶ

(−
2

𝑥௡
ଷ)

2 ൬
1

𝑥௡
ଶ൰

ଷ =>

𝑥௡ାଵ = 𝑥௡ + 𝑥௡
ଶ ൬

1

𝑥௡
− 𝑦൰ + 𝑥௡

ଷ(
1

𝑥௡
− 𝑦)ଶ =>

𝑥௡ାଵ = 𝑥௡ + 𝑥௡(1 − 𝑦𝑥௡) + 𝑥௡(1 − 𝑦𝑥௡)ଶ (20)

This method will require one subtraction, two addition, and four multiplication.

We could be tempted to factor out the xn-1 as outlined below:

𝑧௡ = 1 − 𝑦𝑥௡
𝑥௡ାଵ = 𝑥௡(1 + 𝑧௡ + (𝑧௡)ଶ (21)

This will require three addition/subtraction and three multiplication. However, all the
multiplication needs to carry out using full precision.

The cubic convergence rate means that for each iteration you triple the number of correct
digits requiring fewer iterations than the Newton method.

Example of Cubic convergence method for inverse
To see how this algorithm works let us find the inverse of 1.6 using an initial start guess
of 0.1.

Halley
1/y cubic convergence
1/y 1.6
Y= 1.6

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 26

x0= 0.1
n xn Error
1 0.25456 3.7E-01
2 0.494865 1.3E-01
3 0.619358 5.6E-03
4 0.625 4.6E-07
5 0.625 0.0E+00

After five iterations, the difference between the iteration and the build-in division
operator is zero and the result of 1/1.6 is 0.625.

Source inverse_3rd order_dynamic()
float_precision _float_precision_inverse_cubic_deep(const float_precision& a)
 {
 const size_t extra = 5;
 const size_t precision = a.precision();
 const eptype expo = a.exponent();
 const intmax_t limit = -(intmax_t)((precision + 1)*log2(10)) - 1;
 const float_precision c1(1);
 size_t digits;
 double fx;
 float_precision r, s, x, y(a);

 // if a is a true power of 2 then we do not need to iterate but just
 // reverse the exponent and return
 if (a.size() == 1)
 {
 y.exponent(-y.exponent());
 return y;
 }

 // find the inverse of y without exponent and adjust for exponent later
 y.exponent(0); // y is in the interval [1..2[
 // Do iteration using extra digits with higher precision
 x.precision(precision + extra);
 // Get an initial guess using an ordinary floating point
 fx = 1 / (double)y;
 x = float_precision(fx);

 // Now iterate using 3rd order x=x+x(1-xy)+x(1-yx)^2
 for (digits = std::min((size_t)48, precision); ; digits =
std::min(precision + extra, digits * 3))
 {
 // Increase precision by two for the working variable s & x.
 s.precision(digits);
 x.precision(digits);
 // Only half the precision for r as suggested by Richard P. Brent
 r.precision(digits / 2 + 1);
 r = c1 - y * x; // (1-yx)
 s = x * r; // x(1-yx)
 x += s; // x = x + x(1 - yx)
 if (2 * r.exponent() > limit)
 x += s * r; // x=x+x(1-yx)+x(1-yx)^2

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 27

 if (digits == precision + extra &&
 (r.iszero() || 2 * r.exponent() < limit))
 break;
 }

 // Reapply exponent, mode, and precision
 x.adjustExponent(-expo);
 x.mode(a.mode());
 x.precision(precision + 1);
 return x;
 }

The third order with cubic convergence is similar in structure to the Newton method.

Performance:

The Y-axis is in milliseconds and the X-axis is the number of decimal precisions ranging
from 200,000 digits number to 3.5M digits number.

Figure 2

0

10000

20000

30000

40000

50000

60000

70000

80000

2.
00

E+
05

3.
00

E+
05

4.
00

E+
05

5.
00

E+
05

6.
00

E+
05

7.
00

E+
05

8.
00

E+
05

9.
00

E+
05

1.
00

E+
06

1.
10

E+
06

1.
20

E+
06

1.
30

E+
06

1.
40

E+
06

1.
50

E+
06

1.
60

E+
06

1.
70

E+
06

1.
80

E+
06

1.
90

E+
06

2.
00

E+
06

2.
10

E+
06

2.
20

E+
06

2.
30

E+
06

2.
40

E+
06

2.
50

E+
06

2.
60

E+
06

2.
70

E+
06

2.
80

E+
06

2.
90

E+
06

3.
00

E+
06

3.
10

E+
06

3.
20

E+
06

3.
30

E+
06

3.
40

E+
06

3.
50

E+
06

Inverse

Newton Newton Brent Newton Deep

Newton Brent Deep 3rd order 3rd order deep

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 28

As can be seen, the 3rd order with dynamic (deep in the above chart) outperforms the
other methods. Comparing dynamic versus ordinary we see that the performance gain is
approx. a factor of two.

Recommendation Inverse

The above new methods show that you can gain a significant performance improvement
using dynamic precision iteration. In addition, with the use of Brent [7] enhancement,
you can further save on the workload.

 Addition/Subtraction Multiplication Multiplication

half precision
Newton 1 2
Newton (Brent) 2 1 1
3rd order 3 3
3rd order (Brent) 3 1 3

Based on the performance measure recommend:

1) Use the third-order method using Brent’s recommendation.
2) The use of dynamic precision improves the performance by a factor of two for

both Newton and the third-order method.

Fast Square Root and inverse calculation for Arbitrary
Precision numbers

1 March 2023. Page 29

Reference

1) Arbitrary precision library package. Arbitrary Precision C++ Packages
(hvks.com)

2) Numerical recipes in C++, 3rd edition, Cambridge University Press, New York,
NY 2007

3) Wilkinson, J H, Rounding errors in Algebraic Processes, Prentice-Hall Inc,
Englewood Cliffs, NJ 1963

4) Methods of Computing square roots; May 17-2013;
http://en.wikipedia.org/wiki/Methods_of_computing_square_roots

5) Borwein, Pi and the AGM, Volume 4, John Willey & Sons Inc, New York, NY
1998

6) The Yacas book of algorithms, Version 1.3.3, April 1 2013 by the Yacas team
7) Richard Brent & Paul Zimmermann, Modern Computer Arithmetic, Version 0.5.9

17 October 2010; http://maths-people.anu.edu.au/~brent/pd/mca-cup-0.5.9.pdf
8) Boost, performance comparison of nrooth algorithm

https://www.boost.org/doc/libs/1_73_0/libs/math/doc/html/math_toolkit/root_com
parison/root_n_comparison.html

